DigiLAB
This course will guide you through the intricacies of creating, implementing, and optimizing digital twins, offering a comprehensive understanding of their architecture and applications. Whether you're an industry professional, a budding engineer, or simply curious about the digital transformation, this journey will equip you with the knowledge and skills to harness the power of digital replicas in various sectors. Dive in, and let's bring the virtual and real worlds closer together!

Curriculum
- 7 Sections
- 296 Lessons
- 3 Quizzes
- 0m Duration
Project data and Resources access
2 Lessons
- 1. Project data access
- 2. Demo sites documentation
0. Introduction to Digital Twins
46 Lessons1 Quiz
- 0.- Introduction to Digital Twins
- 1. Introduction to the course
- 1.1. What do you know about Digital Twins?
- 2.1. On Digital Twins
- 2.2. Planning
- 2.2.1. Assessment of existing conditions
- 2.2.2. Determine objectives and qualities
- 2.2.3. Major levels of digital twins
- 2.3. Methodology
- 2.4. Standards and Regulations
- 2.5. Digital twin benefits: Use cases, roles, stages
- 2.5.1. Use cases
- 2.5.2. Roles
- 2.5.3. Use cases
- 2.6. Computer tools
- 2.7. Knowledge
- 3. Digital twin aspects
- 3.1. Building digital twin
- 3.2. Dynamic updating
- 3.3. VR/AR/XR
- 3.4. Smartization
- 4. Examples and exercises
- 4.1. Exercise Ii1: Getting familiar with the demo sites
- 4.2. Viewing demo sites geometry
- 4.2.1. Exercise Ai1: Viewing demo site buildings using IFC
- 4.2.2. Exercise Ai2: Viewing demo site buildings using Revit
- 4.3. Access to sensor data
- 4.3.1. Exercise Bi1: Accessing sensor data via ThingSpeak website
- 4.3.2. Exercise Bi2: Accessing sensor data via ThingSpeak API
- 4.4. Digital twin in game engine
- 4.4.1. Exercise Ci1 : Sensordata visualization tool
- 4.5. Smartization
- 4.5.1. Exercise Di1
- 5. Digital twins in an (information) security perspective
- 5.1. Introduction on information security for digital twins
- 5.2. The McCumber Cube, also termed CNSS security model
- 5.3. Combining information security with object security
- 5.4. General security aspects to consider when handling digital twins
- 5.5. Demo sites as security cases: The security aspects connected to the demo sites
- 6 Digital Twin Intro / Discussion questions
- 7. References
- 7.1. Text books
- 7.2. Articles
- 7.3. WEB sites
- 8. Terminology
- 8.1. Glossary
- 8.2. Abbreviations
1. Building Digital Twins
29 Lessons
- 1. Building Digital Twins
- 1. Learning Outcome
- 2. Planning
- 3. Data Capture
- 3.1. Intro
- 3.2. Photogrammetry
- 3.2.1. Physical Principles
- 3.2.2. Operating technology
- 3.3. Laser scanning
- 3.3.1. Physical Principles
- 3.3.2. Operating technology
- 3.3.2.1. Platforms for laser scanning
- 3.3.2.2. Target points /georeferencing
- 3.3.2.3. Scanner parameters
- 3.3.3. Practical application / Exercise
- 3.3.3.1. Exercise A3.1 Laser scanner simulation
- 4. 3D Modelling
- 4.1 What is 3D modelling and why is it needed?
- 4.2. Intro: Software
- 4.3 Import point Cloud
- 4.4. Building modelling
- 4.5. Rooms / Spaces
- 4.6. Model enrichment
- 4.7. Material parameter
- 5. Dataflow
- 5.1. Formats
- 5.2 Coordinate System
- 5.3 Export
- 6. Summary
2. Updating Digital Twins with dynamic data
34 Lessons1 Quiz
- 2. Updating Digital Twins with dynamic data
- 1. Learning outcome
- 2. Sensorization Planning
- 2.1. Basic principles of sensors
- 2.2. Types of sensors
- 2.2.1. Environmental sensors
- 2.2.2. Motion and Proximity sensors
- 2.2.3. Optical and Imaging sensors
- 2.2.4. Sound and Vibration sensors
- 2.2.5. Chemical and Biometric sensors
- 2.3. How to select suitable sensors for each application
- 2.4. Check your knowledge about sensors
- 3. Programming sensors
- 3.1. Programming platforms: Arduino IDE
- 3.2. Basic principles of programming: Arduino
- 3.3. How to program sensors to capture relevant data
- 3.3.1. Libraries
- 3.3.2. Pin definition
- 3.3.3. Initialization
- 3.3.4. Serial communication
- 3.3.5. Reading sensor data
- 3.3.6. Error handling: common issues and troubleshooting
- 3.4. Exercise - Create your own Arduino project
- 3.5. Exercise - Use Wokwi platform to explore and create Arduino projects
- 4. IoT platforms
- 4.1. Intro
- 4.2. Thingspeak
- 4.2.1. Install and configure ThingSpeak
- 4.2.2. Devices configuration
- 4.2.3. Data visualization
- 4.3. Arduino Cloud
- 4.4. Exercise: Connect an Arduino device to Thingspeak and visualize the data
- 4.5. Understanding APIs
- 4.6. Accessing ThingSpeak API for data retrieval
- 5. Summary
3. Virtual training on Digital Twins
53 Lessons
- 3. Virtual training on Digital Twins
- 1. Learning outcome
- 2. Introduction to VR AR XR
- 3. Software tools
- 3.1. Game engines
- 3.2. BIM-model software
- 3.3. Point cloud softwares
- 3.3.1. Autodesk Recap
- 3.3.2. CloudCompare
- 3.3.3. MeshLab
- 3.3.4. Agisoft Metashape
- 3.4. 3D optimization software
- 3.4.1. Simplygon
- 3.4.2. Blender
- 3.5. VR Software
- 3.5.1. Meta Quest Link
- 3.5.2. SteamVR
- 4. Preparing models
- 4.2. Preparing BIM model
- 4.3. Optimizing the point cloud models
- 4.3.1. Limiting and segmenting areas with Autodesk Recap
- 4.3.2. Segmenting, cleaning and creating meshes with CloudCompare
- 4.3.2.1. Segmentation tools
- 4.3.2.2. Filters and subsampling
- 4.3.2.3. Normals and sensors
- 4.3.2.4. Meshing and surface reconstruction
- 4.3.3. Fixing and decimating the models and building textures with Agisoft Metashape
- 4.3.3.1. Closing holes
- 4.3.3.2. Smoothing and decimating the model
- 4.3.3.3. Building textures
- 4.3.4. Building textures and simplifying meshes with MeshLab
- 4.3.5. Simplifying the meshes with Simplygon
- 5. Import models
- 5.1. Model preparation and normals
- 5.1.1. Normals in MeshLab
- 5.1.2. Normals in CloudCompare
- 5.1.3. Import models and check normals in Blender
- 5.2. Import process to the Game Engines
- 5.2.1. Unity
- 5.3. Displaying and updating the models
- 5.4. Collaboration: Speckle
- 6. VR/AR
- 6.1. Software and hardware
- 6.2. Interactivity and movement in VR
- 6.3. Assessing the models in VR
- 7. Virtual Training
- 7.1. Presentation of the models
- 7.2. Movement and interaction in VR
- 8. Exercises
- 8.1. VR Development environment with Unity and model importing
- 8.2. Create 3D model from the Point cloud file and import the resulting model to Unity
- 8.3. Show live sensor data in Unity engine
- 9. Summary
4. Smartization of Digital Twins
105 Lessons1 Quiz
- 4. Smartization of Digital Twins
- 1. Learning outcome
- 2. Smartization in Digital Twin
- 2.1. Digital Twin
- 2.2. Digital Twin vs BIM
- 2.3. From BIM to Digital Twin
- 2.4. Digital model, Digital Shaddow and Digital Twin
- 2.5. Smartization
- 2.6. Suggested Literature
- 2.7. Assignment
- 2.8. Demo Site Case study
- 2.8.1. Demo Sites
- 2.8.2. The Case: Evaluation of Indoor Environment
- 2.9. Data Storage, sharing and Analyze
- 3. Smartization with Revit and Dynamo
- 3.1. Introduction: Installation and getting started
- 3.2. Visual programming with Dynamo
- 3.2.1. Revit Terminology
- 3.2.2. Programming Terminology
- 3.2.3. Programming Logic
- 3.2.4. Programming Control Flow
- 3.3. Quantity Take-Off
- 3.3.1. Getting Started
- 3.3.2. Walls (Area)
- 3.3.3. Walls (Type and Heat Transfer Coefficient)
- 3.3.4. Building Envelope
- 3.3.5. Filtering
- 3.3.6. Export to Excel
- 3.3.7. Continue Export to Excel
- 3.3.8. Assignment
- 3.3.9. Summing up
- 3.4. Digital Twin
- 3.4.1. Setting-up Revit Model
- 3.4.2. Web-Request
- 3.4.3. Web-Request Exercise (solution)
- 3.4.4. Temperature (Storting Data)
- 3.4.5. Indoor Environment Quality (CEN 16798)
- 3.4.6. Categorization
- 3.4.7. Colouring Rooms
- 3.4.8. All Rooms
- 3.4.9. A New Solution
- 3.4.10. Changing Parameter from Dynamo
- 3.4.11. Boolean Switch
- 3.4.12. Summing up
- 3.4.13. Assignment
- 3.5. Learn more about Dynamo
- 4. Smartization and data visualization with Power BI
- 4.1. Getting started with Power BI
- 4.1.1. Language and User Interface
- 4.1.2. Raw Data from NTNU server
- 4.1.3. Sensors and Location
- 4.1.4. Power BI, Power Query, & Power Pivot
- 4.2. Temperature analysis
- 4.2.1.1 Getting data from WEB
- 4.2.2. Filtering the "Things" (Rooms/monitors)
- 4.2.3. Visualizing Data with Line Charts
- 4.2.4. External weather data
- 4.2.5. Exploring Time-Based Temperature
- 4.2.6. Analyzing Temperature in 10-Minute and Hourly Buckets
- 4.2.7. Data Integration: Synchronizing Indoor and Outdoor Temperature
- 4.2.8. Importing Excel Files
- 4.2.9. Integrating Calendar Table
- 4.2.10. Fixing Datatype for Temperature
- 4.2.11. Creating a Time Table
- 4.2.12. Creating relation to weather station
- 4.2.13. Visualization and Report View
- 4.2.14. Assignment
- 4.3. Thermal Comfort Analysis
- 4.3.1. Averaged Hourly based Temperature Table
- 4.3.2. Thermal Comfort Categorization
- 4.3.3. Visualizing data with Bar Chart
- 4.3.4. Changing the Room monitor
- 4.3.5. Synchronized Filtering of Year, Month and Day
- 4.3.6. Week Slicer
- 4.3.7. Day of the Week Slicer
- 4.3.8. Time of the Day Slicer
- 4.3.9. Optimize the Visualization and New Features
- 4.3.10. Assignment
- 4.4. Illuminance and Pir_motion
- 4.4.1. Getting Data from WEB
- 4.4.2. Visualizing Illuminance with a Line Chart
- 4.4.3. Visualizing Pir Motion with Line Chart
- 4.4.4. Hourly Average Tables for Illumination and PIR_Motion
- 4.4.5. Merging Illumination and PIR_Motion Tables
- 4.4.6. Identifying hours with Inefficient Artificial Lighting
- 4.4.7. Quantifying Artificial Lighting Efficiency
- 4.4.8. Assignment
- 4.5. A Digital Twin?
- 5. Vizualization of Revit data in PowerBI
- 5.1. Introduction
- 5.2. What is speckle?
- 5.2.1. Create a speckle account
- 5.2.2. Revit speckle connector
- 5.3. What is Power BI?
- 5.3.1. Revit project as raw data
- 5.3.2. Installation of Speckle Visual
- 5.4. Tutorial: Data visualization
- 5.4.1. Export data from Revit to Speckle
- 5.4.2. Import data from Speckle
- 5.4.3. Transform data
- 5.4.4. Visualization of data
- 5.5. Tutorial: Visualization of room data
- 5.6. Tutorial visualization of categories
- 5.7. Vizualization of Revit data in PowerBI
- 5.8. References and links
- 6. Summary
Demo Sites Documentation
27 Lessons
- 1. Demo Site Spain - DSS
- 1.1. Sensors installed
- 1.2. Type of sensors
- 1.3. Location of the sensors
- 1.4. Administration of the sensors
- 1.5. Accessing ThingSpeak API
- 1.6. JSON Data Format
- 1.7. Key components in the JSON Response
- 1.8. Example of use
- 1.9. Additional resources
- 2. Demo Site Norway - DSN
- 2.1. Overview
- 2.2. BIM part
- 2.3. Sensor part
- 2.4. Location of the sensors
- 2.5. Arduino User Account
- 2.6. Arduino terminology handling devices and sensors
- 2.7. Connecting the Arduino devices to internet
- 2.8. Access to current reading of the sensors
- 3. Long time storage (LTS) of sensor data
- 3.1. Database
- 3.2. API
- 3.3. Data management and data harvesting
- 3.4. User interface
- 3.5. Access to services
- 3.6. Access details
- 3.7. References
